«Сетунь» представляет собой малую ЭВМ, построенную на принципах троичной логики, другими словами это троичный компьютер. Она была разработана в 1959 году в стенах вычислительного центра Московского государственного университета. Этот уникальный троичный компьютер, практически не имеет аналогов не только в данный момент времени, но и вообще в истории вычислительной техники.
Для начала разберёмся, что же такое троичный компьютер, коим, как уже было сказано, является рассматриваемая модель «Сетунь». Такое название получил специализированный компьютер, который построен на логических элементах и узлах двух типов – как на классических двоичных, так и уникальных в своём роде троичных. Понятно, что он использует в своей работе соответственные системы счисления, логики и алгоритмы работы – двоичные и троичные.
Можно выделить следующие основные этапы развития троичного компьютера:
- в период с середины 12-13 веков Фибоначчи смог доказать, что троичная система счисления может быть более экономичной по сравнению с двоичной – в случае, когда при условном взвешивании можно класть гири не на одну чашу весов, а на обе;
- в 1840 году появилась первая троичная вычислительная машина, ставшая вообще одной из первых механических вычислительных машин;
- в период с 1956 по 1958 годы Н.П. Брусенцов создал первый троичный компьютер серийного производства – ту самую «Сетунь»;
- позднее, в 1970 году, Брусенцов выпустил вторую версию своего детища, получившего имя «Сетунь-70»;
- долгое время данное направление не имело практически никакого развития, однако, в 2008 году была построена трёхтритная цифровая компьютерная система TCA2, которая, в отличие от «Сетуни», работала не на ферритдиодных магнитных усилителях переменного тока, а на интегральных транзисторах. Но это уже, как говорится, совсем другая история.
В Советском союзе было выпущено пять десятков таких машин, тридцать из которых активно использовались в советских университетах.
Автор «Сетуни» Н.П. Брусенцов на основе обычной двоичной ферритодиодной ячейки Гутенмахера разработал её уникальный троичный аналог, работа которого была построена на двухбитном троичном коде. Всё это выглядело следующим образом – один трит (так называется единица измерения в данном случае) записывается в два двоичных разряда. При этом состояние каждого разряда отображается двумя лампочками, а вот четвёртое состояние, оставшееся свободным, ничем не заполняется.
Помимо трита, в троичной логике, используемой «Сетуньей», аналогично двоичной системе, в которой есть бит и байт, применяется термин «трайт», являющийся минимальной непосредственно адресуемой единицей главной памяти «Сетуни», равный шести тритам, что примерно равен девяти с половиной битов. Таким образом, получается, что трайт чуть больше привычной единицы измерения двоичной системы байта. Два трайта равны 19 битам, три трайта – почти 29 битам и т.д. Он может принимать значения в довольно широком диапазоне – от -364 до 364.
Стоит отметить забавный факт – отрицательные троичные и девятеричные цифры, выводимые на «Сетуни» на печать, отображались перевёрнутыми «вверх ногами», то есть повёрнутыми на 180 градусов.
Основные преимущества, которые имеют троичные компьютеры по отношению к двоичным:
1) во-первых, троичная система обладает наибольшей плотностью записи информации среди всех существующих целочисленных систем счисления. Из данного факта следует, что при прочих равных условиях троичные компьютеры будут иметь превосходящую удельную ёмкость памяти и удельную производительность процессора по сравнению с двоичными аналогами;
2) троичные компьютеры лучше приспособлены к троичным алгоритмам, которые работают быстрее двоичных алгоритмов;
3) при этом троичные компьютеры способны делать практически всё, что делают их двоичные коллеги, поскольку двоичная логика является центральным подмножеством троичной;
4) процесс накопления ошибки округления на троичных компьютерах также идёт гораздо медленнее, поскольку округление в троичной системе происходит путём отбрасывания лишних разрядов.
Говоря о будущем таких машин, как «Сетунь» (то есть троичных компьютеров), известный американский учёный Дональд Кнут, отмечал, что они занимают очень мало место в отрасли вычислительной техники, что объясняется массовым засильем двоичных компонентов, производимых в огромных количествах. Но, поскольку троичная логика гораздо эффектнее, а главное, эффективнее двоичной, не исключено, что в недалёком будущем к ней вернутся.
На данный момент вполне реальным выглядит вариант использования троичного компьютера в сочетании с волоконной оптикой, имеющий три заданных значения: 0, соответствующий состоянию Выключено, 1 – состояние Низкий и 2 – состояние Высокий.